1 research outputs found

    MR-based protein imaging of the human brain by means of dualCEST

    Get PDF
    Chemical exchange saturation transfer (CEST) is an emerging magnetic resonance imaging (MRI) technique enabling indirect detection of low-concentration cellular compounds in living tissue by their magnetization transfer with water. In particular, protein-attributed CEST signals have been shown to provide valuable diagnostic information for various diseases. While conventional CEST approaches suffer from confounding signals from metabolites and macromolecules, the novel dual-frequency irradiation CEST (dualCEST) technique enables increased protein specificity by selectively detecting the intramolecular spin-diffusion. However, application of this technique has so far been limited to spectroscopic investigations of model solutions at ultrahigh magnetic field strengths. In this thesis, dualCEST was translated to a clinical whole-body MR scanner, enabling protein imaging of the human brain. To this end, several methodological developments were implemented and optimized: (i) improved dual-frequency pulses for signal preparation, (ii) a fast and robust volumetric image readout, (iii) a weighted acquisition scheme, and (iv) an adaptive denoising technique. The resulting improvements are not limited to dualCEST but are relevant for the research field of CEST-MRI in general. Extensive measurements of biochemical model solutions and volunteers demonstrated the protein specificity and reproducibility of dualCEST-MRI. The clinical applicability was verified in pilot studies with tumor and Alzheimer’s patients
    corecore